From 1 - 10 / 22
  • The GSQ Eulo 3 borehole was drilled approximately 50 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks.

  • The GSQ Eulo 4 borehole was drilled approximately 35.5 km SW of Eulo, Queensland. The borehole was designed to test aeromagnetic anomalies in the basement rocks, and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • The Euroli 1 borehole was drilled approximately 23 km SSW of Hungerford, Queensland (which is located on the New South Wales-Queensland border). The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates. The Euroli 1 borehole was commenced as a vertical mud rotary borehole and was completed with a deviated diamond drilled tail using a wedge.

  • The Janina 1 borehole was drilled approximately 110 km W of Bourke, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.

  • <div>The National Geochemical Survey of Australia (NGSA) is Australia’s only internally consistent, continental-scale geochemical atlas and dataset. The present dataset contains additional mineralogical data obtained on NGSA samples selected from the Barkly-Isa-Georgetown (BIG) region of northeastern Australia for the second partial data release of the Heavy Mineral Map of Australia (HMMA) project. The HMMA project, a collaborative project between Geoscience Australia and Curtin University underpinned by a pilot project establishing its feasibility, is part of the Australian Government-funded Exploring for the Future (EFTF) program.</div><div>One-hundred and eighty eight NGSA sediment samples were selected from the HMMA project within the EFTF’s BIG polygon plus an approximately one-degree buffer. The samples were taken on average from 60 to 80 cm depth in floodplain landforms, dried and sieved to a 75-430 µm grainsize fraction, and the contained heavy minerals (HMs; i.e., those with a specific gravity > 2.9 g/cm3) were separated by dense fluids and mounted on cylindrical epoxy mounts. After polishing and carbon-coating, the mounts were subjected to automated mineralogical analysis on a TESCAN® Integrated Mineral Analyzer (TIMA). Using scanning electron microscopy and backscatter electron imaging integrated with energy dispersive X-ray analysis, the TIMA identified 151 different HMs in the BIG area. The dataset, consisting of over 18 million individual mineral grains, was quality controlled and validated by an expert team. The data released here can be visualised, explored and downloaded using an online, bespoke mineral network analysis (MNA) tool built on a cloud-based platform. Preliminary analysis suggests that copper minerals cuprite and chalcopyrite may be indicative of base-metal/copper mineralisation in the area. Accompanying this report are two data files of TIMA results, and a minerals vocabulary file. </div><div>When completed in 2023, it is hoped the HMMA project will positively impact mineral exploration and prospectivity modelling around Australia, as well as have other applications in earth and environmental sciences.</div>

  • <div>Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g. recognising geological provinces, studying geological processes) as well in archaeological (e.g. informing on past human migrations), palaeontological/ecological (e.g. investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g. validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected mostly from the low-density National Geochemical Survey of Australia (www.ga.gov.au/ngsa), with a few additional Northern Australia Geochemical Survey infill samples. The present study targeted the northern parts of Western Australia, the Northern Territory and Queensland in Australia, north of 21.5 °S. The samples were taken mostly from a depth of ~60-80 cm depth in floodplain deposits at or near the outlet of large catchments (drainage basins). A coarse grain-size fraction (&lt;2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Preliminary results demonstrate a wide range of strontium isotopic values (0.7048 &lt; 87Sr/86Sr &lt; 1.0330) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (&gt;100 km) patterns that appears to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, the extensive black clay soils of the Barkly Tableland define a &gt;500 km-long northwest-southeast-trending low anomaly (87Sr/86Sr &lt; 0.7182). Where carbonate or mafic igneous rocks dominate, a low to moderate strontium isotope signature is observed. In proximity to the outcropping Proterozoic metamorphic provinces of the Tennant, McArthur, Murphy and Mount Isa geological regions, conversely, high 87Sr/86Sr values (&gt; 0.7655) are observed. A potential link between mineralisation and elevated 87Sr/86Sr values in these regions needs to be investigated in greater detail. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape and model derived therefrom can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations. &nbsp;The new spatial dataset is publicly available through the Geoscience Australia portal https://portal.ga.gov.au/.</div>

  • <div>Heavy minerals (HMs) are those with a specific gravity greater than 2.9 g/cc (e.g., anatase, zircon). They have been used successfully in mineral exploration programs outside Australia for decades [1 and refs therein]. Individual HMs and combinations, or co-occurrence, of HMs can be characteristic of lithology, degree of metamorphism, alteration, weathering or even mineralisation. These are termed indicator minerals, and have been used in exploration for gold, diamonds, mineral sands, nickel-copper, platinum group elements, volcanogenic massive sulfides, non-sulfide zinc, porphyry copper-molybdenum, uranium, tin-tungsten, and rare earth elements mineralization. Although there are proprietary HM sample assets held by industry in Australia, no extensive public-domain dataset of the natural distribution of HMs across the continent currently exists.</div><div> We describe a vision for a national-scale heavy mineral (HM) map generated through automated mineralogical identification and quantification of HMs contained in floodplain sediments from large catchments covering most of Australia [1]. These samples were collected as part of the National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa) and are archived in Geoscience Australia’s rock store. The composition of the sediments can be assumed to reflect the dominant rock and soil types within each catchment (and potentially those upstream), with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering-transport-deposition cycle. </div><div> Underpinning this vision is a pilot project, focusing on a subset of NGSA to demonstrate the feasibility of the larger, national-scale project. Ten NGSA sediment samples were selected and both bulk and HM fractions were analysed for quantitative mineralogy using a Tescan® Integrated Mineral Analyzer (TIMA) at the John de Laeter Centre, Curtin University (Figure 1). Given the large and complex nature of the resultant HM dataset, we built a bespoke, cloud-based mineral network analysis (MNA) tool to visualise, explore and discover relationships between HMs, as well as between them and geological setting or mineral deposits. The pilot project affirmed our expectations that a rich and diverse mineralogical ecosystem will be revealed by expanding HM mapping to the continental scale. </div><div> A first partial data release in 2022 was the first milestone of the Heavy Mineral Map of Australia (HMMA) project. The area concerned is the Darling-Curnamona-Delamerian region of southeastern Australia, where the richly endowed Broken Hill mineral province lies. Here, we identified over 140 heavy minerals from 29 million individual mineral observations in 223 sediment samples. Using the MNA tool, one can quickly identify interesting base metal mineral associations and their spatial distributions (Figure 2).</div><div> We envisage that the Heavy Mineral Map of Australia and the MNA tool will contribute significantly to mineral prospectivity analysis and modelling in Australia, particularly for technology critical elements and their host minerals, which are central to the global economy transitioning to a more sustainable, decarbonised paradigm.</div><div><br></div>Figure 1. Distribution map of ten selected heavy minerals in the heavy mineral fractions of the ten NGSA pilot samples (pie charts), overlain on Australia’s geological regions (variable colors) [2]). Map projection: Albers equal area.</div><div><br></div><div>Figure 2. Graphical user interface for the Geoscience Australia MNA cloud-based visualization tool for the DCD project (https://geoscienceaustralia.shinyapps.io/HMMA-MNA/) showing the network for Zn minerals with the gahnite subnetwork highlighted (left) and the map of gahnite distribution (right).</div><div> <strong>References</strong></div><div>[1] Caritat et al., 2022, Minerals, 12(8), 961. https://doi.org/10.3390/min12080961 </div><div>[2] Blake &amp; Kilgour, 1998, Geosci Aust. https://pid.geoscience.gov.au/dataset/ga/32366 </div><div><br></div>This Abstract was submitted/presented to the 2022 Mineral Prospectivity and Exploration Targeting (MinProXT 2022) webinar, Freiburg, Germany, 01 - 03 November (www.minproxt.com)

  • <div>The Proterozoic alkaline and related igneous rocks of Australia is a surface geology compilation of alkaline and related igneous rocks of Proterozoic age in Australia. This dataset is one of five datasets, with compilations for Archean, Paleozoic, Mesozoic and Cenozoic alkaline and related igneous rocks already released.</div><div><br></div><div>Geological units are represented as polygon and point geometries and, are attributed with information that includes, but is not limited to, stratigraphic nomenclature and hierarchy, age, lithology, composition, proportion of alkaline rocks, body morphology, unit expression, emplacement type, presence of mantle xenoliths and diamonds, and primary data source. Source data for the geological unit polygons provided in Data Quality LINEAGE. Geological units are grouped into informal geographic “alkaline provinces”, which are represented as polygon geometries, and attributed with information similar to that provided for the geological units.</div>

  • <div>The Heavy Mineral Map of Australia (HMMA) project1, part of Geoscience Australia’s Exploring for the Future program, determined the abundance and distribution of heavy minerals (HMs; specific gravity >2.9 g/cm3) in 1315 floodplain sediment samples obtained from Geoscience Australia’s National Geochemical Survey of Australia (NGSA) project2. Archived NGSA samples from floodplain landforms were sub-sampled with the 75-430 µm fraction subjected to dense media separation and automated mineralogy assay using a TESCAN Integrated Mineral Analysis (TIMA) instrument at Curtin University.</div><div><br></div><div>Interpretation of the massive number of mineral observations generated during the project (~150&nbsp;million mineral observations; 166 unique mineral species) required the development of a novel workflow to allow end users to discover, visualise and interpret mineral co-occurrence and spatial relationships. Mineral Network Analysis (MNA) has been shown to be a dynamic and quantitative tool capable of revealing and visualizing complex patterns of abundance, diversity and distribution in large mineralogical data sets3. To facilitate the application of MNA for the interpretation of the HMMA dataset and efficient communication of the project results, we have developed a Mineral Network Analysis for Heavy Minerals (MNA4HM) web application utilising the ‘Shiny’ platform and R package. The MNA4HM application is used to reveal (1) the abundance and co-occurrences of heavy minerals, (2) their spatial distributions, and (3) their relations to first-order geological and geomorphological features. The latter include geological provinces, mineral deposits, topography and major river basins. Visualisation of the mineral network guides parsimonious yet meaningful mapping of minerals typomorphic of particular geological environments or mineral systems. The mineralogical dataset can be filtered or styled based on mineral attributes (e.g., simplified mineralogical classes) and properties (e.g., chemical composition).</div><div><br></div><div>In this talk we will demonstrate an optimised MNA4HM workflow (identification à mapping à interpretation) for exploration targeting selected critical minerals important for the transition to a lower carbon global economy. </div><div><br></div><div>The MNA4HM application is hosted at https://geoscienceaustralia.shinyapps.io/mna4hm and is available for use by the geological community and general public.</div> This Abstract was submitted and presented to the 2023 Goldschmidt Conference Lyon, France (https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi)

  • The Tongo 1 borehole was drilled approximately 83 km NE of White Cliffs, New South Wales. The borehole was designed to test aeromagnetic anomalies in the basement rocks and to test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data.